{ "id": "2208.11532", "version": "v1", "published": "2022-08-24T13:26:53.000Z", "updated": "2022-08-24T13:26:53.000Z", "title": "A novel method for data augmentation: Nine Dot Moving Least Square (ND-MLS)", "authors": [ "Wen Yang", "Rui Wang", "Yanchao Zhang" ], "comment": "16 pages,13 figures", "categories": [ "cs.CV" ], "abstract": "Data augmentation greatly increases the amount of data obtained based on labeled data to save on expenses and labor for data collection and labeling. We present a new approach for data augmentation called nine-dot MLS (ND-MLS). This approach is proposed based on the idea of image defor-mation. Images are deformed based on control points, which are calculated by ND-MLS. The method can generate over 2000 images for one exist-ing dataset in a short time. To verify this data augmentation method, extensive tests were performed covering 3 main tasks of computer vision, namely, classification, detection and segmentation. The results show that 1) in classification, 10 images per category were used for training, and VGGNet can obtain 92% top-1 acc on the MNIST dataset of handwritten digits by ND-MLS. In the Omniglot dataset, the few-shot accuracy usu-ally decreases with the increase in character categories. However, the ND-MLS method has stable performance and obtains 96.5 top-1 acc in Res-Net on 100 different handwritten character classification tasks; 2) in segmentation, under the premise of only ten original images, DeepLab obtains 93.5%, 85%, and 73.3% m_IOU(10) on the bottle, horse, and grass test datasets, respectively, while the cat test dataset obtains 86.7% m_IOU(10) with the SegNet model; 3) with only 10 original images from each category in object detection, YOLO v4 obtains 100% and 97.2% bottle and horse detection, respectively, while the cat dataset obtains 93.6% with YOLO v3. In summary, ND-MLS can perform well on classification, object detec-tion, and semantic segmentation tasks by using only a few data.", "revisions": [ { "version": "v1", "updated": "2022-08-24T13:26:53.000Z" } ], "analyses": { "keywords": [ "novel method", "dot moving", "handwritten character classification tasks", "original images", "cat test dataset" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }