{ "id": "2208.10558", "version": "v1", "published": "2022-08-22T19:23:34.000Z", "updated": "2022-08-22T19:23:34.000Z", "title": "On the clique number of noisy random geometric graphs", "authors": [ "Matthew Kahle", "Minghao Tian", "Yusu Wang" ], "comment": "34 pages, 4 figures", "categories": [ "math.CO", "math.PR" ], "abstract": "Let $G_n$ be a random geometric graph, and then for $q,p \\in [0,1)$ we construct a \"$(q,p)$-perturbed noisy random geometric graph\" $G_n^{q,p}$ where each existing edge in $G_n$ is removed with probability $q$, while and each non-existent edge in $G_n$ is inserted with probability $p$. We give asymptotically tight bounds on the clique number $\\omega\\left(G_n^{q,p}\\right)$ for several regimes of parameter.", "revisions": [ { "version": "v1", "updated": "2022-08-22T19:23:34.000Z" } ], "analyses": { "subjects": [ "05C80" ], "keywords": [ "clique number", "perturbed noisy random geometric graph", "non-existent edge", "asymptotically tight bounds", "probability" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }