{ "id": "2208.10459", "version": "v1", "published": "2022-08-22T17:26:24.000Z", "updated": "2022-08-22T17:26:24.000Z", "title": "Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem", "authors": [ "Daniel Hu", "Hari R. Iyer", "Alexander Shashkov" ], "comment": "39 pages, comments welcome!", "categories": [ "math.NT" ], "abstract": "We prove an explicit Chebotarev variant of the Brun--Titchmarsh theorem. This leads to explicit versions of the best-known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove that $$\\lim_{x \\to \\infty} \\frac{\\#\\{1 \\leq n \\leq x \\mid \\tau(n) \\neq 0\\}}{x} > 1-1.15 \\times 10^{-12},$$ where $\\tau(n)$ is Ramanujan's tau-function. This is the first known positive unconditional lower bound for the proportion of positive integers $n$ such that $\\tau(n) \\neq 0$.", "revisions": [ { "version": "v1", "updated": "2022-08-22T17:26:24.000Z" } ], "analyses": { "subjects": [ "11R44", "11N36", "11F30" ], "keywords": [ "explicit chebotarev variant", "brun-titchmarsh theorem", "modular forms", "best-known unconditional upper bounds", "holomorphic cuspidal newforms" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }