{ "id": "2208.09928", "version": "v1", "published": "2022-08-21T17:30:10.000Z", "updated": "2022-08-21T17:30:10.000Z", "title": "Variations of Central Limit Theorems and Stirling numbers of the First Kind", "authors": [ "Bernhard Heim", "Markus Neuhauser" ], "categories": [ "math.CO", "math.PR" ], "abstract": "We construct a new parametrization of double sequences $\\{A_{n,k}(s)\\}_{n,k}$ between $A_{n,k}(0)= \\binom{n-1}{k-1}$ and $A_{n,k}(1)= \\frac{1}{n!}\\stirl{n}{k}$, where $\\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.", "revisions": [ { "version": "v1", "updated": "2022-08-21T17:30:10.000Z" } ], "analyses": { "subjects": [ "05A16", "60F05" ], "keywords": [ "central limit theorem", "first kind", "unsigned stirling numbers", "variations", "local limit theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }