{ "id": "2208.09918", "version": "v1", "published": "2022-08-21T16:16:39.000Z", "updated": "2022-08-21T16:16:39.000Z", "title": "Discrete group actions on 3-manifolds and embeddable Cayley complexes", "authors": [ "Agelos Georgakopoulos", "George Kontogeorgiou" ], "categories": [ "math.GT", "math.CO" ], "abstract": "We prove that a group $\\Gamma$ admits a discrete topological (equivalently, smooth) action on some simply-connected 3-manifold if and only if $\\Gamma$ has a Cayley complex embeddable -- with certain natural restrictions -- in one of the following four 3-manifolds: (i) $\\mathbb{S}^3$, (ii) $\\mathbb{R}^3$, (iii) $\\mathbb{S}^2 \\times \\mathbb{R}$, (iv) the complement of a tame Cantor set in $\\mathbb{S}^3$.", "revisions": [ { "version": "v1", "updated": "2022-08-21T16:16:39.000Z" } ], "analyses": { "subjects": [ "57M60", "57S25", "57S30", "57S17", "57K30", "05E45" ], "keywords": [ "discrete group actions", "embeddable cayley complexes", "tame cantor set", "natural restrictions", "complement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }