{ "id": "2208.09528", "version": "v1", "published": "2022-08-19T19:28:36.000Z", "updated": "2022-08-19T19:28:36.000Z", "title": "The fractional $p\\,$-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems", "authors": [ "Manas Kar", "Jesse Railo", "Philipp Zimmermann" ], "comment": "31 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "This article investigates nonlocal, fully nonlinear generalizations of the classical biharmonic operator $(-\\Delta)^2$. These fractional $p$-biharmonic operators appear naturally in the variational characterization of the optimal fractional Poincar\\'e constants in Bessel potential spaces. We study the following basic questions for anisotropic fractional $p$-biharmonic systems: existence and uniqueness of weak solutions to the associated interior source and exterior value problems, unique continuation properties (UCP), monotonicity relations, and inverse problems for the exterior Dirichlet-to-Neumann maps. Furthermore, we show the UCP for the fractional Laplacian in all Bessel potential spaces $H^{t,p}$ for any $t\\in \\mathbb{R}$, $1 \\leq p < \\infty$ and $s \\in \\mathbb{R}_+ \\setminus \\mathbb{N}$: If $u\\in H^{t,p}(\\mathbb{R}^n)$ satisfies $(-\\Delta)^su=u=0$ in a nonempty open set $V$, then $u\\equiv 0$ in $\\mathbb{R}^n$. This property of the fractional Laplacian is then used to obtain a UCP for the fractional $p$-biharmonic systems and plays a central role in the analysis of the associated inverse problems. Our proofs use variational methods and the Caffarelli-Silvestre extension.", "revisions": [ { "version": "v1", "updated": "2022-08-19T19:28:36.000Z" } ], "analyses": { "subjects": [ "35R30", "26A33", "42B37" ], "keywords": [ "biharmonic systems", "inverse problems", "bessel potential spaces", "fractional laplacian", "optimal fractional poincare constants" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }