{ "id": "2208.09192", "version": "v1", "published": "2022-08-19T07:33:11.000Z", "updated": "2022-08-19T07:33:11.000Z", "title": "Potential theory of Dirichlet forms with jump kernels blowing up at the boundary", "authors": [ "Panki Kim", "Renming Song", "Zoran Vondraček" ], "comment": "63 pages", "categories": [ "math.PR", "math.AP" ], "abstract": "In this paper we study the potential theory of Dirichlet forms on the half-space $\\mathbb{R}^d_+$ defined by the jump kernel $J(x,y)=|x-y|^{-d-\\alpha}\\mathcal{B}(x,y)$ and the killing potential $\\kappa x_d^{-\\alpha}$, where $\\alpha\\in (0, 2)$ and $\\mathcal{B}(x,y)$ can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all $d \\ge 1$, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.", "revisions": [ { "version": "v1", "updated": "2022-08-19T07:33:11.000Z" } ], "analyses": { "subjects": [ "60J45" ], "keywords": [ "dirichlet forms", "jump kernels blowing", "potential theory", "boundary harnack principle holds", "killing potential" ], "note": { "typesetting": "TeX", "pages": 63, "language": "en", "license": "arXiv", "status": "editable" } } }