{ "id": "2208.08498", "version": "v1", "published": "2022-08-17T19:34:29.000Z", "updated": "2022-08-17T19:34:29.000Z", "title": "On $α$-excellent graphs", "authors": [ "M. Dettlaff", "M. A. Henning", "J. Topp" ], "comment": "15 pages, 4 figures", "categories": [ "math.CO" ], "abstract": "A graph $G$ is $\\alpha$-excellent if every vertex of $G$ is contained in some maximum independent set of $G$. In this paper, we characterize $\\alpha$-excellent bipartite graphs, $\\alpha$-excellent unicyclic graphs, $\\alpha$-excellent simplicial graphs, $\\alpha$-excellent chordal graphs, $\\alpha$-excellent block graphs, and we show that every generalized Petersen graph is $\\alpha$-excellent.", "revisions": [ { "version": "v1", "updated": "2022-08-17T19:34:29.000Z" } ], "analyses": { "subjects": [ "F.2.2" ], "keywords": [ "excellent graphs", "maximum independent set", "excellent block graphs", "excellent bipartite graphs", "excellent chordal graphs" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }