{ "id": "2208.08350", "version": "v1", "published": "2022-08-17T15:23:06.000Z", "updated": "2022-08-17T15:23:06.000Z", "title": "On the restricted size Ramsey number for a pair of cycles", "authors": [ "Tomasz Ɓuczak", "Joanna Polcyn", "Zahra Rahimi" ], "categories": [ "math.CO" ], "abstract": "For graphs $H_1,H_2$ by $r^*(H_1,H_2)$ we denote the minimum number of edges in a graph $G$ on $r(H_1,H_2)$ vertices such that $G\\to (H_1,H_2)$. We show that for each pair of natural numbers $k,n$, $k\\le n$, where $k$ is odd and $n$ is large enough, we have $$r^*(C_n,C_k)=\\lceil (n+1)(2n-1)/2\\rceil \\,.$$", "revisions": [ { "version": "v1", "updated": "2022-08-17T15:23:06.000Z" } ], "analyses": { "subjects": [ "05D10", "05C38", "05C55" ], "keywords": [ "restricted size ramsey number", "natural numbers", "minimum number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }