{ "id": "2208.08325", "version": "v1", "published": "2022-08-17T14:48:57.000Z", "updated": "2022-08-17T14:48:57.000Z", "title": "Algebraic Cycles and values of Green's functions", "authors": [ "Ramesh Sreekantan" ], "comment": "41 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We construct indecomposable cycles in the motivic cohomology group $H^3_{{\\mathcal M}}(A,{\\mathbb Q}(2))$ where $A$ is an Abelian surface over a number field or the function field of a base. When $A$ is the self product of the universal elliptic curve over a modular curve, these cycles can be used to prove algebraicity results for values of higher Green's functions, similar to a conjecture of Gross, Kohnen and Zagier. We formulate a conjecture which relates our work with the recent work of Bruinier-Ehlen-Yang on the conjecture of Gross-Kohnen-Zagier.", "revisions": [ { "version": "v1", "updated": "2022-08-17T14:48:57.000Z" } ], "analyses": { "subjects": [ "11G15", "11G18", "14K22", "14C25", "14G35", "19E15" ], "keywords": [ "algebraic cycles", "motivic cohomology group", "higher greens functions", "universal elliptic curve", "conjecture" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }