{ "id": "2208.08164", "version": "v1", "published": "2022-08-17T09:05:34.000Z", "updated": "2022-08-17T09:05:34.000Z", "title": "Propagation of minima for nonlocal operators", "authors": [ "Isabeau Birindelli", "Giulio Galise", "Hitoshi Ishii" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-\\emph{th fractional truncated Laplacian} or the $k$-\\emph{th fractional eigenvalue} which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.", "revisions": [ { "version": "v1", "updated": "2022-08-17T09:05:34.000Z" } ], "analyses": { "keywords": [ "nonlocal operators", "propagation", "sharp maximum principle", "fully nonlinear integral operators", "fractional truncated laplacian" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }