{ "id": "2208.07215", "version": "v1", "published": "2022-08-15T14:20:01.000Z", "updated": "2022-08-15T14:20:01.000Z", "title": "The structure of subspaces in Orlicz spaces between $L^1$ and $L^2$", "authors": [ "S. V. Astashkin" ], "comment": "24 pages", "categories": [ "math.FA" ], "abstract": "A subspace $H$ of a rearrangement invariant space $X$ on $[0,1]$ is strongly embedded in $X$ if, in $H$, convergence in $X$-norm is equivalent to convergence in measure. We obtain necessary and sufficient conditions on an Orlicz function $M$, under which the unit ball of an arbitrary strongly embedded subspace in the Orlicz space $L_M$ has equi-absolutely continuous norms in $L_M$.", "revisions": [ { "version": "v1", "updated": "2022-08-15T14:20:01.000Z" } ], "analyses": { "subjects": [ "46E30", "46B03", "46B09", "46A45" ], "keywords": [ "orlicz space", "rearrangement invariant space", "convergence", "sufficient conditions", "orlicz function" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }