{ "id": "2208.06921", "version": "v1", "published": "2022-08-14T21:02:36.000Z", "updated": "2022-08-14T21:02:36.000Z", "title": "Level compatibility in Sharifi's conjecture", "authors": [ "Emmanuel Lecouturier", "Jun Wang" ], "comment": "Comments welcome!", "categories": [ "math.NT" ], "abstract": "Sharifi has constructed a map from the first homology of the modular curve $X_1(M)$ to the $K$-group $K_2(\\mathbf{Z}[\\zeta_M, \\frac{1}{M}])$, where $\\zeta_M$ is a primitive $M$th root of unity. We study how these maps relate when $M$ varies. Our method relies on the techniques developed by Sharifi and Venkatesh.", "revisions": [ { "version": "v1", "updated": "2022-08-14T21:02:36.000Z" } ], "analyses": { "keywords": [ "sharifis conjecture", "level compatibility", "method relies", "modular curve", "th root" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }