{ "id": "2208.06896", "version": "v1", "published": "2022-08-14T18:51:01.000Z", "updated": "2022-08-14T18:51:01.000Z", "title": "Length of sets under restricted families of projections onto lines", "authors": [ "Terence L. J. Harris" ], "comment": "7 pages", "categories": [ "math.CA", "math.AP" ], "abstract": "Let $\\gamma: I \\to S^2$ be a $C^2$ curve with $\\det(\\gamma, \\gamma', \\gamma'')$ nonvanishing, and for each $\\theta \\in I$ let $\\rho_{\\theta}$ be orthogonal projection onto the line through $\\gamma(\\theta)$. It is shown that if $A \\subseteq \\mathbb{R}^3$ is a Borel set of Hausdorff dimension strictly greater than 1, then $\\rho_{\\theta}(A)$ has positive length for a.e. $\\theta \\in I$. This answers a question raised by K\\\"aenm\\\"aki, Orponen and Venieri.", "revisions": [ { "version": "v1", "updated": "2022-08-14T18:51:01.000Z" } ], "analyses": { "subjects": [ "28A78", "28A80" ], "keywords": [ "restricted families", "hausdorff dimension strictly greater", "orthogonal projection", "borel set", "positive length" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }