{ "id": "2208.06483", "version": "v1", "published": "2022-08-12T20:04:29.000Z", "updated": "2022-08-12T20:04:29.000Z", "title": "On orthogonal Laurent polynomials related to the partial sums of power series", "authors": [ "Sergey M. Zagorodnyuk" ], "comment": "10 pages", "categories": [ "math.CA" ], "abstract": "Let $f(z) = \\sum_{k=0}^\\infty d_k z^k$, $d_k\\in\\mathbb{C}\\backslash\\{ 0 \\}$, $d_0=1$, be a power series with a non-zero radius of convergence $\\rho$: $0 <\\rho \\leq +\\infty$. Denote by $f_n(z)$ the n-th partial sum of $f$, and $R_{2n}(z) = \\frac{ f_{2n}(z) }{ z^n }$, $R_{2n+1}(z) = \\frac{ f_{2n+1}(z) }{ z^{n+1} }$, $n=0,1,2,...$. By the result of Hendriksen and Van Rossum there exists a linear functional $\\mathbf{L}$ on Laurent polynomials, such that $\\mathbf{L}(R_n R_m) = 0$, when $n\\not= m$, while $\\mathbf{L}(R_n^2)\\not= 0$. We present an explicit integral representation for $\\mathbf{L}$ in the above case of the partial sums. We use methods from the theory of generating functions. The case of finite systems of such Laurent polynomials is studied as well.", "revisions": [ { "version": "v1", "updated": "2022-08-12T20:04:29.000Z" } ], "analyses": { "subjects": [ "42C05" ], "keywords": [ "orthogonal laurent polynomials", "power series", "n-th partial sum", "explicit integral representation", "van rossum" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }