{ "id": "2208.06241", "version": "v1", "published": "2022-08-11T11:01:50.000Z", "updated": "2022-08-11T11:01:50.000Z", "title": "Variable Lebesgue algebra on a Locally Compact group", "authors": [ "Parthapratim Saha", "Bipan Hazarika" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "For a locally compact group $H$ with a left Haar measure, we study variable Lebesgue algebra $\\mathcal{L}^{p(\\cdot)}(H)$ with respect to a convolution. We show that if $\\mathcal{L}^{p(\\cdot)}(H)$ has bounded exponent, then it contains a left approximate identity. We also prove a necessary and sufficient condition for $\\mathcal{L}^{p(\\cdot)}(H)$ to have an identity. We observe that a closed linear subspace of $\\mathcal{L}^{p(\\cdot)}(H)$ is a left ideal if and only if it is left translation invariant.", "revisions": [ { "version": "v1", "updated": "2022-08-11T11:01:50.000Z" } ], "analyses": { "subjects": [ "43A10", "43A15", "43A75", "43A77" ], "keywords": [ "locally compact group", "study variable lebesgue algebra", "left haar measure", "left approximate identity", "left translation invariant" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }