{ "id": "2208.05239", "version": "v1", "published": "2022-08-10T09:37:19.000Z", "updated": "2022-08-10T09:37:19.000Z", "title": "Poincaré inequalities for Markov chains: a meeting with Cheeger, Lyapunov and Metropolis", "authors": [ "Christophe Andrieu", "Anthony Lee", "Sam Power", "Andi Q. Wang" ], "comment": "80 pages", "categories": [ "math.PR", "stat.CO" ], "abstract": "We develop a theory of weak Poincar\\'e inequalities to characterize convergence rates of ergodic Markov chains. Motivated by the application of Markov chains in the context of algorithms, we develop a relevant set of tools which enable the practical study of convergence rates in the setting of Markov chain Monte Carlo methods, but also well beyond.", "revisions": [ { "version": "v1", "updated": "2022-08-10T09:37:19.000Z" } ], "analyses": { "subjects": [ "60J22", "65C05" ], "keywords": [ "markov chain monte carlo methods", "metropolis", "weak poincare inequalities", "ergodic markov chains", "characterize convergence rates" ], "note": { "typesetting": "TeX", "pages": 80, "language": "en", "license": "arXiv", "status": "editable" } } }