{ "id": "2208.03597", "version": "v1", "published": "2022-08-06T23:50:55.000Z", "updated": "2022-08-06T23:50:55.000Z", "title": "Exceptional set estimates for orthogonal and radial projections in $\\mathbb{R}^n$", "authors": [ "Paige Dote", "Shengwen Gan" ], "comment": "25 pages, 2 figures", "categories": [ "math.CA", "math.MG" ], "abstract": "We give different proofs of classic Falconer-type and Kaufman-type exceptional estimates for orthogonal projections using the high-low method. With the new techniques, we resolve Liu's conjecture on radial projections: given a Borel set $A\\subset \\mathbb{R}^n$, we have \\[ \\text{dim} (\\{x\\in \\mathbb{R}^n \\setminus A \\mid \\text{dim}(\\pi_x(A))<\\text{dim} A\\}) \\leq \\lceil \\text{dim} A\\rceil. \\]", "revisions": [ { "version": "v1", "updated": "2022-08-06T23:50:55.000Z" } ], "analyses": { "keywords": [ "exceptional set estimates", "radial projections", "resolve lius conjecture", "kaufman-type exceptional estimates", "classic falconer-type" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }