{ "id": "2208.02308", "version": "v1", "published": "2022-08-03T18:47:26.000Z", "updated": "2022-08-03T18:47:26.000Z", "title": "Fourier-Jacobi models of Deligne-Lusztig characters and depth zero local descent for unitary groups", "authors": [ "Dongwen Liu", "Jia-Jun Ma", "Fang Shi" ], "comment": "31 pages. Comments are welcome", "categories": [ "math.RT", "math.NT" ], "abstract": "In this paper, we deduce explicit multiplicity formulas of the Fourier-Jacobi model for Deligne-Lusztig characters of finite symplectic groups, unitary groups, and general linear groups. We then apply these results to deduce the explicit depth zero local descent (\\`a la Soudry and Tanay) for $p$-adic unitary groups. The result is a concrete example in the context of non-tempered Gan-Gross-Prasad program.", "revisions": [ { "version": "v1", "updated": "2022-08-03T18:47:26.000Z" } ], "analyses": { "keywords": [ "unitary groups", "deligne-lusztig characters", "fourier-jacobi model", "explicit depth zero local descent", "deduce explicit multiplicity formulas" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }