{ "id": "2208.02242", "version": "v1", "published": "2022-08-03T17:49:03.000Z", "updated": "2022-08-03T17:49:03.000Z", "title": "Patterns in the iteration of an arithmetic function", "authors": [ "Melvyn B. Nathanson" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $S$ be an arithmetic function and let $V = (v_i)_{i=1}^n$ be a finite sequence of positive integers. An integer $m$ has increasing-decreasing pattern $V$ with respect to $S$ if, for odd $i$, \\[ S^{v_1+ \\cdots + v_{i-1}}(m) < S^{v_1+ \\cdots + v_{i-1}+1}(m) < \\cdots < S^{v_1+ \\cdots + v_{i-1}+v_{i}}(m) \\] and, for even $i$, \\[ S^{v_1+ \\cdots + v_{i-1}}(m) > S^{v_1+ \\cdots +v_{i-1}+1}(m) > \\cdots > S^{v_1+ \\cdots +v_{i-1}+v_i}(m). \\] The arithmetic function $S$ is wildly increasing-decreasing if, for every finite sequence $V$ of positive integers, there exists an integer $m$ such that $m$ has increasing-decreasing pattern $V$ with respect to $S$. This paper gives a new proof that the Collatz function is wildly increasing-decreasing.", "revisions": [ { "version": "v1", "updated": "2022-08-03T17:49:03.000Z" } ], "analyses": { "subjects": [ "11A25", "11B83", "11D04" ], "keywords": [ "arithmetic function", "finite sequence", "positive integers", "collatz function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }