{ "id": "2208.01608", "version": "v1", "published": "2022-08-02T17:32:25.000Z", "updated": "2022-08-02T17:32:25.000Z", "title": "Non-trivial action of the Johnson filtration on the homology of configuration spaces", "authors": [ "Andrea Bianchi", "Andreas Stavrou" ], "categories": [ "math.GT", "math.AT", "math.GN" ], "abstract": "We let the mapping class group $\\Gamma_{g,1}$ of a genus $g$ surface $\\Sigma_{g,1}$ with one boundary component act on the homology $H_*(F_{n}(\\Sigma_{g,1});\\mathbb{Q})$ of the $n^{th}$ ordered configuration space of the surface. We prove that the action is non-trivial when restricted to the $(n-1)^{st}$ stage of the Johnson filtration, for all $n\\ge 1$ and $g\\ge 2$. We deduce an analogous result for closed surfaces.", "revisions": [ { "version": "v1", "updated": "2022-08-02T17:32:25.000Z" } ], "analyses": { "subjects": [ "55R80", "57K20" ], "keywords": [ "johnson filtration", "non-trivial action", "boundary component act", "ordered configuration space", "mapping class group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }