{ "id": "2208.01405", "version": "v1", "published": "2022-07-31T19:12:12.000Z", "updated": "2022-07-31T19:12:12.000Z", "title": "The $C$-numerical range and Unitary dilations", "authors": [ "Chi-Kwong Li" ], "comment": "9 pages", "categories": [ "math.FA" ], "abstract": "For an $n\\times n$ complex matrix $C$, the $C$-numerical range of a bounded linear operator $T$ acting on a Hilbert space of dimension at least $n$ is the set of complex numbers ${\\rm tr}(CX^*TX)$, where $X$ is a partial isometry satisfying $X^*X = I_n$. It is shown that $${\\bf cl}(W_C(T)) = \\cap \\{{\\bf cl}(W_C(U)): U \\hbox{ is a unitary dilation of } T\\}$$ for any contraction $T$ if and only if $C$ is a rank one normal matrix.", "revisions": [ { "version": "v1", "updated": "2022-07-31T19:12:12.000Z" } ], "analyses": { "subjects": [ "47A12", "47A20", "15A60" ], "keywords": [ "numerical range", "unitary dilations", "complex matrix", "bounded linear operator", "complex numbers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }