{ "id": "2208.00546", "version": "v1", "published": "2022-08-01T00:12:50.000Z", "updated": "2022-08-01T00:12:50.000Z", "title": "Interior Dynamics of Fatou Sets", "authors": [ "Mi Hu" ], "categories": [ "math.DS" ], "abstract": "In this paper, we investigate the precise behavior of orbits inside attracting basins. Let $f$ be a holomorphic polynomial of degree $m\\geq2$ in $\\mathbb{C}$, $\\mathcal {A}(p)$ be the basin of attraction of an attracting fixed point $p$ of $f$, and $\\Omega_i (i=1, 2, \\cdots)$ be the connected components of $\\mathcal{A}(p)$. We prove that there is a constant $C$ so that for every point $z_0$ inside any $\\Omega_i$, there exists a point $q\\in \\cup_k f^{-k}(p)$ inside $\\Omega_i$ such that $d_{\\Omega_i}(z_0, q)\\leq C$, where $d_{\\Omega_i}$ is the Kobayashi distance on $\\Omega_i.$", "revisions": [ { "version": "v1", "updated": "2022-08-01T00:12:50.000Z" } ], "analyses": { "keywords": [ "fatou sets", "interior dynamics", "orbits inside attracting basins", "holomorphic polynomial", "precise behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }