{ "id": "2208.00298", "version": "v1", "published": "2022-07-30T19:46:37.000Z", "updated": "2022-07-30T19:46:37.000Z", "title": "Stability of determination of Riemann surface from its DN-map in terms of Teichmüller distance", "authors": [ "M. I. Belishev", "D. V. Korikov" ], "comment": "25 pages, 0 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "As is known, the Dirichlet-to-Neumann operator $\\Lambda$ of a Riemannian surface $(M,g)$ determines the surface up to conformal equivalence class $[(M,g)]$. Such classes constitute the Teichm\\\"uller space with the distance ${\\rm d}_T$. We show that the determination is continuous: $\\|\\Lambda-\\Lambda'\\|_{H^1(\\partial M)\\to L_2(\\partial M)}\\to 0$ implies ${\\rm d}_T([(M,g)],[(M',g')])\\to 0$.", "revisions": [ { "version": "v1", "updated": "2022-07-30T19:46:37.000Z" } ], "analyses": { "subjects": [ "35R30", "46J15", "46J20", "30F15" ], "keywords": [ "riemann surface", "teichmüller distance", "determination", "conformal equivalence class", "dirichlet-to-neumann operator" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }