{ "id": "2207.14739", "version": "v1", "published": "2022-07-29T15:24:42.000Z", "updated": "2022-07-29T15:24:42.000Z", "title": "On Brauer configuration algebras induced by finite groups", "authors": [ "Alex Sierra Cárdenas" ], "comment": "31 pages, 4 figures. arXiv admin note: text overlap with arXiv:1808.03194", "categories": [ "math.RT", "math.GR" ], "abstract": "In this article we calculate two aspects of the representation theory of a Brauer configuration algebra: its Cartan matrix, and the module length of its associated indecomposable projective modules. Then we introduce the concept of subgroup-occurrence of an element in a group and use the previous aspects to demonstrate combinatorial equalities satisfied for any finite group.", "revisions": [ { "version": "v1", "updated": "2022-07-29T15:24:42.000Z" } ], "analyses": { "keywords": [ "brauer configuration algebra", "finite group", "demonstrate combinatorial equalities", "module length", "cartan matrix" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }