{ "id": "2207.14523", "version": "v1", "published": "2022-07-29T07:45:08.000Z", "updated": "2022-07-29T07:45:08.000Z", "title": "A note on the plane curve singularities in positive characteristic", "authors": [ "Evelia R. García Barroso", "Arkadiusz Płoski" ], "comment": "15 pages, 3 figures", "categories": [ "math.AG" ], "abstract": "Given an algebroid plane curve $f=0$ over an algebraically closed field of characteristic $p\\geq 0$ we consider the Milnor number $\\mu(f)$, the delta invariant $\\delta(f)$ and the number $r(f)$ of its irreducible components. Put $\\bar \\mu(f)=2\\delta(f)-r(f)+1$. If $p=0$ then $\\bar \\mu (f)=\\mu(f)$ (the Milnor formula). If $p>0$ then $\\mu(f)$ is not an invariant and $\\bar \\mu(f)$ plays the role of $\\mu(f)$. Let $\\mathcal N_f$ be the Newton polygon of $f$. We define the numbers $\\mu(\\mathcal N_{f})$ and $r(\\mathcal N_{f})$ which can be computed by explicit formulas. The aim of this note is to give a simple proof of the inequality $\\bar \\mu(f)-\\mu(\\mathcal N_{f})\\geq r(\\mathcal N_{f})- r(f)\\geq 0$ due to Boubakri, Greuel and Markwig. We also prove that $\\bar \\mu(f)=\\mu(\\mathcal N_{f})$ when $f$ is non-degenerate.", "revisions": [ { "version": "v1", "updated": "2022-07-29T07:45:08.000Z" } ], "analyses": { "subjects": [ "14H20", "32S05" ], "keywords": [ "plane curve singularities", "positive characteristic", "algebroid plane curve", "explicit formulas", "newton polygon" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }