{ "id": "2207.14113", "version": "v1", "published": "2022-07-28T14:27:34.000Z", "updated": "2022-07-28T14:27:34.000Z", "title": "On Galois groups of linearized polynomials related to the general linear group of prime degree", "authors": [ "Rod Gow", "Gary McGuire" ], "categories": [ "math.NT" ], "abstract": "Let $L(x)$ be any $q$-linearized polynomial with coefficients in $\\mathbb{F}_q$, of degree $q^n$. We consider the Galois group of $L(x)+tx$ over $\\mathbb{F}_q(t)$, where $t$ is transcendental over $\\mathbb{F}_q$. We prove that when $n$ is a prime, the Galois group is always $GL(n,q)$, except when $L(x)=x^{q^n}$. Equivalently, we prove that the arithmetic monodromy group of $L(x)/x$ is $GL(n,q)$.", "revisions": [ { "version": "v1", "updated": "2022-07-28T14:27:34.000Z" } ], "analyses": { "keywords": [ "general linear group", "galois group", "linearized polynomial", "prime degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }