{ "id": "2207.12985", "version": "v1", "published": "2022-07-26T15:47:28.000Z", "updated": "2022-07-26T15:47:28.000Z", "title": "Simple supercuspidal L-packets of symplectic groups over dyadic fields", "authors": [ "Guy Henniart", "Masao Oi" ], "comment": "26 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "We consider the symplectic group $\\mathrm{Sp}_{2n}$ defined over a $p$-adic field $F$, where $p=2$. We prove that every simple supercuspidal representation (in the sense of Gross--Reeder) of $\\mathrm{Sp}_{2n}(F)$ corresponds to an irreducible $L$-parameter under the local Langlands correspondence for $\\mathrm{Sp}_{2n}$ established by Arthur.", "revisions": [ { "version": "v1", "updated": "2022-07-26T15:47:28.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70", "11L05" ], "keywords": [ "simple supercuspidal l-packets", "symplectic group", "dyadic fields", "simple supercuspidal representation", "local langlands correspondence" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }