{ "id": "2207.12635", "version": "v1", "published": "2022-07-26T03:44:03.000Z", "updated": "2022-07-26T03:44:03.000Z", "title": "Compact differences of composition operators on weighted Dirichlet spaces", "authors": [ "Robert F. Allen", "Katherine Heller", "Matthew A. Pons" ], "journal": "Cent. Eur. J. Math. 12 (2014), no. 7, 1040-1051", "doi": "10.2478/s11533-013-0397-3", "categories": [ "math.FA" ], "abstract": "Here we consider when the difference of two composition operators is compact on the weighted Dirichlet spaces $\\mathcal{D}_\\alpha$. Specifically we study differences of composition operators on the Dirichlet space $\\mathcal{D}$ and $S^2$, the space of analytic functions whose first derivative is in $H^2$, and then use Calder\\'{o}n's complex interpolation to extend the results to the general weighted Dirichlet spaces. As a corollary we consider composition operators induced by linear fractional self-maps of the disk.", "revisions": [ { "version": "v1", "updated": "2022-07-26T03:44:03.000Z" } ], "analyses": { "subjects": [ "47B33", "46E20", "47B32" ], "keywords": [ "composition operators", "compact differences", "general weighted dirichlet spaces", "linear fractional self-maps", "analytic functions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }