{ "id": "2207.12439", "version": "v1", "published": "2022-07-25T18:00:31.000Z", "updated": "2022-07-25T18:00:31.000Z", "title": "Equidistribution and independence of Gauss sums", "authors": [ "Antonio Rojas-León" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We prove a general independent equidistribution result for Gauss sums associated to $n$ monomials in $r$ variable multiplicative characters over a finite field, which generalizes several previous equidistribution results for Gauss and Jacobi sums. As an application, we show that any relation satisfied by these Gauss sums must be a combination of the conjugation relation $G(\\chi)G(\\overline\\chi)=\\pm q$, Galois conjugation invariance and the Hasse-Davenport product formula.", "revisions": [ { "version": "v1", "updated": "2022-07-25T18:00:31.000Z" } ], "analyses": { "subjects": [ "11L05", "11L07", "11T24" ], "keywords": [ "gauss sums", "general independent equidistribution result", "independence", "hasse-davenport product formula", "galois conjugation invariance" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }