{ "id": "2207.12433", "version": "v1", "published": "2022-07-25T18:00:10.000Z", "updated": "2022-07-25T18:00:10.000Z", "title": "Hölder continuity of the convex minorant of a Lévy process", "authors": [ "David Bang", "Jorge González Cázares", "Aleksandar Mijatović" ], "comment": "10 pages, short YouTube presentation: https://youtu.be/PKvSg2tKqfs", "categories": [ "math.PR" ], "abstract": "We characterise the H\\\"older continuity of the convex minorant of most L\\'evy processes. The proof is based on a novel connection between the path properties of the L\\'evy process at zero and the boundedness of the set of $r$-slopes of the convex minorant.", "revisions": [ { "version": "v1", "updated": "2022-07-25T18:00:10.000Z" } ], "analyses": { "subjects": [ "60G51", "60F20" ], "keywords": [ "convex minorant", "lévy process", "hölder continuity", "levy process", "novel connection" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }