{ "id": "2207.11650", "version": "v1", "published": "2022-07-24T03:46:09.000Z", "updated": "2022-07-24T03:46:09.000Z", "title": "Gonality of the modular curve $X_0(N)$", "authors": [ "Filip Najman", "Petar Orlić" ], "comment": "17 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper we determine the $\\Q$-gonalities of the modular curves $X_0(N)$ for all $N<150$, except for $N=97,133,135,145$. We also determine the $\\mathbb C$-gonality of many of these curves and the $\\mathbb Q$-gonalities and $\\mathbb C$-gonalities for some larger values of $N$. As a consequence of these results, we determine all the modular curves $X_0(N)$ that are tetragonal over $\\mathbb Q$. We find the first known instances of pentagonal curves $X_0(N)$, both over $\\mathbb Q$ and over $\\mathbb C$. Furthermore, we show that $X_0(109)$ is the only pentagonal curve over $\\mathbb Q$, except possibly $X_0(97)$ (whose $\\mathbb Q$-gonality is either $5$ or $6$).", "revisions": [ { "version": "v1", "updated": "2022-07-24T03:46:09.000Z" } ], "analyses": { "keywords": [ "modular curve", "pentagonal curve", "larger values", "consequence" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }