{ "id": "2207.10380", "version": "v1", "published": "2022-07-21T09:24:16.000Z", "updated": "2022-07-21T09:24:16.000Z", "title": "Lower bound for the $2$-adic valuations of central $L$-values of elliptic curves with complex multiplication", "authors": [ "Keiichiro Nomoto" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $E_{4D}$ be the elliptic curve $y^2=x^3-4Dx$ defined over $K=\\mathbb{Q}(i)$ for $D\\in K$ which is coprime to $2$. In this paper, we give a sharp lower bound for the $2$-adic valuation of the algebraic part of the central value of Hecke $L$-function associated with $E_{4D}$.", "revisions": [ { "version": "v1", "updated": "2022-07-21T09:24:16.000Z" } ], "analyses": { "subjects": [ "11G05", "11G15", "11G40" ], "keywords": [ "elliptic curve", "adic valuation", "complex multiplication", "sharp lower bound", "algebraic part" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }