{ "id": "2207.09556", "version": "v1", "published": "2022-07-19T21:26:26.000Z", "updated": "2022-07-19T21:26:26.000Z", "title": "Solubility of Additive Forms of Twice Odd Degree over $\\mathbb{Q}_2(\\sqrt{5})$", "authors": [ "Drew Duncan", "David B. Leep" ], "categories": [ "math.NT" ], "abstract": "We prove that an additive form of degree $d=2m$, $m$ odd, $m\\ge3$, over the unramified quadratic extension $\\mathbb{Q}_2(\\sqrt{5})$ has a nontrivial zero if the number of variables $s$ satisifies $s \\ge 4d+1$. If $3 \\nmid d$, then there exists a nontrivial zero if $s \\ge \\frac{3}{2}d + 1$, this bound being optimal. We give examples of forms in $3d$ variables without a nontrivial zero in case that $3 \\mid d$.", "revisions": [ { "version": "v1", "updated": "2022-07-19T21:26:26.000Z" } ], "analyses": { "subjects": [ "11D72", "11D88", "11E76" ], "keywords": [ "twice odd degree", "additive form", "nontrivial zero", "solubility", "unramified quadratic extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }