{ "id": "2207.09513", "version": "v1", "published": "2022-07-19T18:53:19.000Z", "updated": "2022-07-19T18:53:19.000Z", "title": "Integral canonical models for Shimura varieties defined by tori", "authors": [ "Patrick Daniels" ], "comment": "29 pages. Comments welcome!", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove the Pappas-Rapoport conjecture on the existence of canonical integral models of Shimura varieties with parahoric level structure in the case where the Shimura variety is defined by a torus. As an important ingredient, we show, using the Bhatt-Scholze theory of prismatic $F$-crystals, that there is a fully faithful functor from $\\mathcal{G}$-valued crystalline representations of Gal$(\\bar{K}/K)$ to $\\mathcal{G}$-shtukas over Spd$(\\mathcal{O}_K)$, where $\\mathcal{G}$ is a parahoric group scheme over $\\mathbb{Z}_p$ and $\\mathcal{O}_K$ is the ring of integers in a $p$-adic field $K$.", "revisions": [ { "version": "v1", "updated": "2022-07-19T18:53:19.000Z" } ], "analyses": { "subjects": [ "11G18" ], "keywords": [ "shimura variety", "integral canonical models", "parahoric level structure", "parahoric group scheme", "pappas-rapoport conjecture" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }