{ "id": "2207.09305", "version": "v1", "published": "2022-07-19T14:42:02.000Z", "updated": "2022-07-19T14:42:02.000Z", "title": "The wired minimal spanning forest on the Poisson-weighted infinite tree", "authors": [ "Asaf Nachmias", "Pengfei Tang" ], "comment": "35 pages", "categories": [ "math.PR" ], "abstract": "We study the spectral and diffusive properties of the wired minimal spanning forest (WMSF) on the Poisson-weighted infinite tree (PWIT). Let $M$ be the tree containing the root in the WMSF on the PWIT and $(Y_n)_{n\\geq0}$ be a simple random walk on $M$ starting from the root. We show that almost surely $M$ has $\\mathbb{P}[Y_{2n}=Y_0]=n^{-3/4+o(1)}$ and $\\mathrm{dist}(Y_0,Y_n)=n^{1/4+o(1)}$ with high probability. That is, the spectral dimension of $M$ is $\\frac{3}{2}$ and its typical displacement exponent is $\\frac{1}{4}$, almost surely. These confirm Addario-Berry's predictions in arXiv:1301.1667.", "revisions": [ { "version": "v1", "updated": "2022-07-19T14:42:02.000Z" } ], "analyses": { "keywords": [ "wired minimal spanning forest", "poisson-weighted infinite tree", "simple random walk", "confirm addario-berrys predictions", "high probability" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }