{ "id": "2207.08440", "version": "v1", "published": "2022-07-18T08:48:27.000Z", "updated": "2022-07-18T08:48:27.000Z", "title": "Sharp convergence for sequences of Schrödinger means and related generalizations", "authors": [ "Wenjuan Li", "Huiju Wang", "Dunyan Yan" ], "categories": [ "math.CA", "math.AP" ], "abstract": "For decreasing sequences $\\{t_{n}\\}_{n=1}^{\\infty}$ converging to zero, we obtain the almost everywhere convergence results for sequences of Schr\\\"{o}dinger means $e^{it_{n}\\Delta}f$, where $f \\in H^{s}(\\mathbb{R}^{N}), N\\geq 2$. The convergence results are sharp up to the endpoints, and the method can also be applied to get the convergence results for the fractional Schr\\\"{o}dinger means and nonelliptic Schr\\\"{o}dinger means.", "revisions": [ { "version": "v1", "updated": "2022-07-18T08:48:27.000Z" } ], "analyses": { "subjects": [ "42B25", "42B37" ], "keywords": [ "schrödinger means", "sharp convergence", "related generalizations", "convergence results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }