{ "id": "2207.06992", "version": "v1", "published": "2022-07-14T15:20:54.000Z", "updated": "2022-07-14T15:20:54.000Z", "title": "Limit sets of unfolding paths in Outer space", "authors": [ "Mladen Bestvina", "Radhika Gupta", "Jing Tao" ], "comment": "30 pages", "categories": [ "math.GR", "math.DS", "math.GT" ], "abstract": "We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a non-geometric arational $\\mathbb{R}$-tree T. We also show that T admits exactly two dual ergodic projective currents.", "revisions": [ { "version": "v1", "updated": "2022-07-14T15:20:54.000Z" } ], "analyses": { "subjects": [ "20F65", "20E08", "57M60", "20E36" ], "keywords": [ "outer space", "unfolding path", "limit sets", "dual ergodic projective currents", "projectivized length measures" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }