{ "id": "2207.05830", "version": "v1", "published": "2022-07-12T20:46:12.000Z", "updated": "2022-07-12T20:46:12.000Z", "title": "Spectral equivalence of smooth group schemes over principal ideal local rings", "authors": [ "Itamar Hadas" ], "comment": "26 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathcal{G}$ be a smooth linear group scheme of finite type. For any positive integer $k$ and a finite field $\\mathbb{F}$, let $W_k(\\mathbb{F})$ be the ring of Witt vectors of length $k$ over $\\mathbb{F}$. We show that the group algebras of $\\mathcal{G}(\\mathbb{F}[t]/(t^k))$ and $\\mathcal{G}(W_k(\\mathbb{F}))$ are isomorphic (i.e. the multi-sets of the dimensions of the irreducible representations are equal) for any positive integer $k$ and finite field $\\mathbb{F}$ with large enough characteristic. We also prove that if $\\mathrm{char}\\mathbb{F}$ is large enough, then the cardinality of the set $\\{\\dim\\rho\\big|\\rho\\in \\mathrm{irr}(\\mathcal{G}(\\mathbb{F}))\\}$ is bounded uniformly in $\\mathbb{F}$.", "revisions": [ { "version": "v1", "updated": "2022-07-12T20:46:12.000Z" } ], "analyses": { "subjects": [ "20C15", "20G25", "11U07", "20J06", "11E72" ], "keywords": [ "principal ideal local rings", "smooth group schemes", "spectral equivalence", "smooth linear group scheme", "finite field" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }