{ "id": "2207.05823", "version": "v1", "published": "2022-07-12T20:33:29.000Z", "updated": "2022-07-12T20:33:29.000Z", "title": "Existence and uniqueness of measures of maximal entropy for partially hyperbolic endomorphisms", "authors": [ "Carlos F. Álvarez", "Marisa Cantarino" ], "comment": "15 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "We prove the existence of measures of maximal entropy for partially hyperbolic endomorphisms with one-dimensional center bundle. We also address the uniqueness of such measures for certain endomorphisms defined on the $n$-torus. More precisely, we obtain a unique measure of maximal entropy -- locally in a $C^1$ neighborhood of a linear Anosov endomorphism, and globally with additional hypotheses.", "revisions": [ { "version": "v1", "updated": "2022-07-12T20:33:29.000Z" } ], "analyses": { "subjects": [ "37D35", "37D30" ], "keywords": [ "partially hyperbolic endomorphisms", "maximal entropy", "uniqueness", "one-dimensional center bundle", "linear anosov endomorphism" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }