{ "id": "2207.05717", "version": "v1", "published": "2022-07-12T17:39:37.000Z", "updated": "2022-07-12T17:39:37.000Z", "title": "Homotopy Equivalences of 3-Manifolds", "authors": [ "Federica Bertolotti" ], "comment": "15 pages", "categories": [ "math.GT" ], "abstract": "Let $M$ be an oriented closed $3$-manifold. We prove that there exists a constant $A_M$, depending only on the manifold $M$, such that for every self-homotopy equivalence $f$ of $M$ there is an integer $k$ such that $1 \\leq k \\leq A_M$ and $f^k$ is homotopic to a homeomorphism.", "revisions": [ { "version": "v1", "updated": "2022-07-12T17:39:37.000Z" } ], "analyses": { "subjects": [ "55P10", "57K30" ], "keywords": [ "homotopy equivalences", "self-homotopy equivalence" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }