{ "id": "2207.04972", "version": "v1", "published": "2022-07-11T15:54:06.000Z", "updated": "2022-07-11T15:54:06.000Z", "title": "Duals and pullbacks of normed modules", "authors": [ "Nicola Gigli", "Danka Lučić", "Enrico Pasqualetto" ], "comment": "35 pages", "categories": [ "math.FA" ], "abstract": "We give a general description of the dual of the pullback of a normed module. Ours is the natural generalization to the context of modules of the well-known fact that the dual of the Lebesgue-Bochner space $L^p([0,1],B)$ consists - quite roughly said - of $L^q$ maps from $[0,1]$ to the dual $B'$ of $B$ equipped with the weak$^*$ topology. In order to state our result, we study various fiberwise descriptions of a normed module that are of independent interest.", "revisions": [ { "version": "v1", "updated": "2022-07-11T15:54:06.000Z" } ], "analyses": { "subjects": [ "18F15", "53C23", "28A51", "46G15" ], "keywords": [ "normed module", "independent interest", "natural generalization", "well-known fact", "general description" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }