{ "id": "2207.04611", "version": "v1", "published": "2022-07-11T04:06:43.000Z", "updated": "2022-07-11T04:06:43.000Z", "title": "A Strong Law of Large Numbers under Sublinear Expectations", "authors": [ "Yongsheng Song" ], "categories": [ "math.PR" ], "abstract": "We consider a sequence of i.i.d. random variables $\\{\\xi_k\\}$under a sublinear expectation $\\mathbb{E}=\\sup_{P\\in\\Theta}E_P$. We first give a new proof to the fact that, under each $P\\in\\Theta$, any cluster point of the empirical averages $\\bar{\\xi}_n=(\\xi_1+\\cdots+\\xi_n)/n$ lies in $[\\underline{\\mu}, \\bar{\\mu}]$ with $\\underline{\\mu}=-\\mathbb{E}[-\\xi_1], \\bar{\\mu}=\\mathbb{E}[\\xi_1]$. Then, we consider sublinear expectations on a Polish space $\\Omega$, and show that for each constant $\\mu\\in [\\underline{\\mu},\\bar{\\mu}]$, there exists a probability $P_{\\mu}\\in\\Theta$ such that \\begin {eqnarray}\\label {intro-a.s.} \\lim_{n\\rightarrow\\infty}\\bar{\\xi}_n=\\mu, \\ P_{\\mu}\\textmd{-a.s.}, \\end {eqnarray} supposing that $\\Theta$ is weakly compact and $\\{\\xi_n\\}\\in L^1_{\\mathbb{E}}(\\Omega)$. Under the same conditions, we can get a generalization of (\\ref {intro-a.s.}) in the product space $\\Omega=\\mathbb{R}^{\\mathbb{N}}$ with $\\mu\\in [\\underline{\\mu},\\bar{\\mu}]$ replaced by $\\Pi=\\pi(\\xi_1, \\cdots,\\xi_d)\\in [\\underline{\\mu},\\bar{\\mu}]$, where $\\pi$ is a Borel measurable function on $\\mathbb{R}^d$, $d\\in\\mathbb{R}$. Finally, we characterize the triviality of the tail $\\sigma$-algebra of i.i.d. random variables under a sublinear expectation.", "revisions": [ { "version": "v1", "updated": "2022-07-11T04:06:43.000Z" } ], "analyses": { "subjects": [ "60F15", "60G50", "60G65" ], "keywords": [ "sublinear expectation", "large numbers", "strong law", "random variables", "cluster point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }