{ "id": "2207.03710", "version": "v1", "published": "2022-07-08T06:57:48.000Z", "updated": "2022-07-08T06:57:48.000Z", "title": "Non-linear Affine Processes with Jumps", "authors": [ "Francesca Biagini", "Georg Bollweg", "Katharina Oberpriller" ], "comment": "30 pages", "categories": [ "math.PR", "q-fin.MF" ], "abstract": "We present a probabilistic construction of $\\mathbb{R}^d$-valued non-linear affine processes with jumps. Given a set $\\Theta$ of affine parameters, we define a family of sublinear expectations on the Skorokhod space under which the canonical process $X$ is a (sublinear) Markov process with a non-linear generator. This yields a tractable model for Knightian uncertainty for which the sublinear expectation of a Markovian functional can be calculated via a partial integro-differential equation.", "revisions": [ { "version": "v1", "updated": "2022-07-08T06:57:48.000Z" } ], "analyses": { "subjects": [ "60G65", "60G07" ], "keywords": [ "sublinear expectation", "valued non-linear affine processes", "partial integro-differential equation", "probabilistic construction", "affine parameters" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }