{ "id": "2207.01935", "version": "v1", "published": "2022-07-05T10:18:28.000Z", "updated": "2022-07-05T10:18:28.000Z", "title": "Another Approach on Power Sums", "authors": [ "Christoph Muschielok" ], "comment": "8 pages, 0 figures", "categories": [ "math.CO" ], "abstract": "We show that explicit forms for certain polynomials~$\\psi^{(a)}_m(n)$ with the property \\[ \\psi^{(a+1)}_m(n) = \\sum_{\\nu=1}^n \\psi_m^{(a)}(\\nu) \\] can be found (here, $a,m,n\\in\\mathbb{N}_0$). We use these polynomials as a basis to express the monomials~$n^m$. Once the expansion coefficients are determined, we can express the $m$-th power sums~$S^{(a)}_m(n)$ of any order $a$, \\[ S^{(a)}_m(n) = \\sum_{\\nu_a = 1}^n \\cdots \\sum_{\\nu_2 = 1}^{\\nu_3} \\sum_{\\nu_1=1}^{\\nu_2} \\nu_1^m, \\] in a very convenient way by exploiting the summation property of the $\\psi_m^{(a)}$, \\[ S^{(a)}_m(n) = \\sum_k c_{mk} \\psi_k^{(a)}(n). \\]", "revisions": [ { "version": "v1", "updated": "2022-07-05T10:18:28.000Z" } ], "analyses": { "subjects": [ "05A10" ], "keywords": [ "power sums", "convenient way", "explicit forms", "th power", "expansion coefficients" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }