{ "id": "2207.01915", "version": "v1", "published": "2022-07-05T09:49:43.000Z", "updated": "2022-07-05T09:49:43.000Z", "title": "On the improvements of Numerical radius inequalities", "authors": [ "Amit Maji", "Atanu Manna" ], "comment": "Preliminary version. 19 pages", "categories": [ "math.FA" ], "abstract": "In this paper, we achieve new and improved numerical radius inequalities of Hilbert space operators by using an Orlicz function. The upper bounds of various numerical radius inequalities have been obtained. Finally, we compute an upper bound of numerical radius for block matrices of the form $\\begin{bmatrix}O & P\\\\Q & O \\end{bmatrix}$, where $P, Q$ are any bounded linear operators on a Hilbert space.", "revisions": [ { "version": "v1", "updated": "2022-07-05T09:49:43.000Z" } ], "analyses": { "subjects": [ "47A12", "47A63" ], "keywords": [ "numerical radius inequalities", "improvements", "upper bound", "hilbert space operators", "bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }