{ "id": "2207.01564", "version": "v1", "published": "2022-07-04T16:32:17.000Z", "updated": "2022-07-04T16:32:17.000Z", "title": "On Quasi Steinberg characters of Complex Reflection Groups", "authors": [ "Ashish Mishra", "Digjoy Paul", "Pooja Singla" ], "comment": "14 pages. Comments welcome", "categories": [ "math.RT" ], "abstract": "Let $G$ be a finite group and $p$ be a prime number dividing the order of $G$. An irreducible character $\\chi$ of $G$ is called a quasi $p$-Steinberg character if $\\chi(g)$ is nonzero for every $p$-regular element $g$ in $G$. In this paper, we classify quasi $p$-Steinberg characters of the complex reflection groups $G(r,q,n)$. In particular, we obtain this classification for Weyl groups of type $B_n$ and type $D_n$.", "revisions": [ { "version": "v1", "updated": "2022-07-04T16:32:17.000Z" } ], "analyses": { "subjects": [ "05E10", "20F55", "20C15" ], "keywords": [ "complex reflection groups", "quasi steinberg characters", "regular element", "weyl groups", "finite group" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }