{ "id": "2207.01096", "version": "v1", "published": "2022-07-03T18:45:07.000Z", "updated": "2022-07-03T18:45:07.000Z", "title": "Balanced rational curves and rigid curves of all genera on some Calabi-Yau complete intersections", "authors": [ "Ziv Ran" ], "categories": [ "math.AG", "math-ph", "math.DG", "math.MP" ], "abstract": "Let $X$ be either a general hypersurface of degree $n+1$ in $\\mathbb P^n$ or a general $(2,n)$ complete intersection in $\\mathbb P^{n+1}, n\\geq 4$. We construct balanced rational curves on $X$ of all high enough even degrees. If $n=3$ or $g=1$, we construct rigid curves of genus $g$ on $X$ of all high enough even degrees. As an application we construct some rigid bundles on Calabi-Yau threefolds.", "revisions": [ { "version": "v1", "updated": "2022-07-03T18:45:07.000Z" } ], "analyses": { "keywords": [ "calabi-yau complete intersections", "construct rigid curves", "construct balanced rational curves", "general hypersurface", "rigid bundles" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }