{ "id": "2207.00917", "version": "v1", "published": "2022-07-02T23:18:18.000Z", "updated": "2022-07-02T23:18:18.000Z", "title": "New John--Nirenberg--Campanato-Type Spaces Related to Both Maximal Functions and Their Commutators", "authors": [ "Pingxu Hu", "Jin Tao", "Dachun Yang" ], "comment": "32 pages, Submitted", "categories": [ "math.FA", "math.AP", "math.CA" ], "abstract": "Let $p,q\\in [1,\\infty]$, $\\alpha\\in{\\mathbb{R}}$, and $s$ be a non-negative integer. In this article, the authors introduce a new function space $\\widetilde{JN}_{(p,q,s)_{\\alpha}}(\\mathcal{X})$ of John-Nirenberg-Campanato type, where $\\mathcal{X}$ denotes $\\mathbb{R}^n$ or any cube $Q_{0}$ of $\\mathbb{R}^n$ with finite edge length. The authors give an equivalent characterization of $\\widetilde{JN}_{(p,q,s)_{\\alpha}}(\\mathcal{X})$ via both the John-Nirenberg-Campanato space and the Riesz-Morrey space. Moreover, for the particular case $s=0$, this new space can be equivalently characterized by both maximal functions and their commutators. Additionally, the authors give some basic properties, a good-$\\lambda$ inequality, and a John-Nirenberg type inequality for $\\widetilde{JN}_{(p,q,s)_{\\alpha}}(\\mathcal{X})$.", "revisions": [ { "version": "v1", "updated": "2022-07-02T23:18:18.000Z" } ], "analyses": { "subjects": [ "42B35", "47B47", "46E30", "42B25" ], "keywords": [ "maximal functions", "john-nirenberg-campanato-type spaces", "commutators", "john-nirenberg type inequality", "finite edge length" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }