{ "id": "2206.14731", "version": "v1", "published": "2022-06-29T15:55:46.000Z", "updated": "2022-06-29T15:55:46.000Z", "title": "Classification of irreducible representations of metaplectic covers of the general linear group over a non-archimedean local field", "authors": [ "Eyal Kaplan", "Erez Lapid", "Jiandi Zou" ], "categories": [ "math.RT", "math.NT" ], "abstract": "Let $F$ be a non-archimedean local field. The classification of the irreducible representations of $GL_n(F)$, $n\\ge0$ in terms of supercuspidal representations is one of the highlights of the Bernstein--Zelevinsky theory. We give an analogous classification for metaplectic coverings of $GL_n(F)$, $n\\ge0$.", "revisions": [ { "version": "v1", "updated": "2022-06-29T15:55:46.000Z" } ], "analyses": { "keywords": [ "non-archimedean local field", "general linear group", "irreducible representations", "metaplectic covers", "classification" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }